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Abstract—In latency-sensitive file caching systems such as
Content Delivery Networks (CDNs) and Mobile Edge Computing
(MEC), the latency of fetching a missing file to the local cache
can be significant. Recent studies have revealed that successive
requests of the same missing file before the fetching completes
could still suffer latency (so-called delayed hits).

Motivated by the practical scenarios, we study the online
general file caching problem with delayed hits and bypassing,
i.e., a request may be bypassed and processed directly at the
remote data center. The objective is to minimize the total request
latency. We show a general reduction that turns a traditional file
caching algorithm to one that can handle delayed hits. We give
an O(Z3/2 logK)-competitive algorithm called CaLa with this
reduction, where Z is the maximum fetching latency of any file
and K is the cache size, and we show a nearly-tight lower bound
Ω(Z logK) for our ratio. Extensive simulations based on the
production data trace from Google and the Yahoo benchmark
illustrate that CaLa can reduce the latency by up to 9.42%
compared with the state-of-the-art scheme dealing with delayed
hits without bypassing, and this improvement increases to 32.01%
if bypassing is allowed.

I. INTRODUCTION

Online file caching is a fundamental problem widely studied

in computer and networking systems. The conventional objec-

tive of file caching is to minimize the cache misses or the

total cost of file retrievals. In general, an exquisite online file

caching algorithm should provide a lower average file access

latency, resulting in a better user experience. When all files

have uniform size and uniform fetch cost (i.e., the paging

problem), intuitive algorithms such as Least Recently Used
(LRU) and First In First Out (FIFO) can achieve a competitive

ratio of O(K) with respect to minimizing the number of

misses, where K is the cache size [1].

However, in practical applications such as Content Delivery

Networks (CDNs) [2] and Mobile Edge Computing (MEC) [3],

due to the long physical distance, the latency for fetching

missing files from the remote data center can be more than

100ms [4], [5], whereas the average inter-time for two con-

secutive file requests could be as low as 1μs [6], e.g., 1M

file requests per second. An interesting case appears. During

the period when a missed file is retrieved from the remote

data center, the subsequent requests for this file can not be

served immediately, and thus should not be simply treated as

a hit. This case is also different from a simple miss as the

requests can be served as a hit after the file is fetched to

local servers. Hence we called this case a delayed hit [6].

Moreover, traditional cache models [1], [7], [8] assume all

the missing files have to be fetched and stored in the local

cache before being accessed, while in the scenario of cloud

related applications, file requests can be sent to and served

directly at the remote cloud, which we call bypassing. Fig. 1

illustrates online file caching in a cloud-based system with the

file misses, hits, delayed hits and bypassing, where there are a

local cache server and multiple remote data centers. The first

request for X arrives at T1. Since X is not stored in the cache,

it is a miss and triggers fetching X from Data Center 1, and

X will not be ready in the local cache until time T3 due to

the fetching latency. Then, another request for X arrives at

T2 (T1 < T2 < T3), which will be buffered and served at T3,

which is a delayed hit. The third request for X arrives at T3 is

a hit. For the request for Y arrives at T4, we choose to bypass

this request directly to avoid space allocation in the cache.

X

Y

Fetch X

Local Cache

Data Center 2

Data Center 1

X X X Y

Miss Delayed Hit Hit Bypass
File Request 

Sequence

Fig. 1. An example of an online file caching system, where a file request may
be served at the local cache or bypassed directly to the remote data center.

So far, few results have been published on online file

caching with delayed hits although it has been noted in the

literature [9]. A representative work is the online paging prob-

lem1 studied in [6], where the authors novelly revealed the

importance of delayed hits in systems with large throughput,

and proposed MAD, an online solution incorporating files’

aggregate delay into existing practical caching algorithms such

as LRU [10], ARC [11] and LHD [12]. However, the file

sizes in cloud-based applications vary dramatically, i.e., up to

1Throughout this paper, paging represents the special case of the caching
problem where the size and fetching cost are both uniform for each file.
Weighted paging means the uniform file size but non-uniform fetching costs.
File caching means non-uniform file sizes and the fetching cost can be uniform
or non-uniform. When the size and fetching cost are both non-uniform, we
call it the general file caching.
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Fig. 2. An example in general file caching with delayed hits and bypassing, where files have heterogeneous size and latency. The size of cache K = 4, files’
size sA = sB = sC = sD = 1, sL = 2, fetching latency zA = zB = 2, zC = zD = zL = 1. The average latency of LRU-MAD, Optimal and Optimal
with bypassing are 11/9, 5/9 and 1/3, respectively.

thousands of times in Google product traces [13]. Hence, the

fetching cost of various files could be quite different, and the

general file caching problem should be investigated. Moreover,

in cloud-based systems, bypassing should also be taken into

account. The following motivating example illustrates that the

existing schemes fail in tackling online general file caching

with delayed hits and bypassing.

Motivating Example. As shown in Fig. 2, there are 5 different

files A,B,C,D and L will be requested, where files’ size

sA = sB = sC = sD = 1, sL = 2, and fetching latency

zA = zB = 2, zC = zD = zL = 1. The latency to bypass

a request is the same as fetching this file. The cache size is

4. Initially, there are A,B and L in the cache. The sequence

of file requests that will arrive is C,D,A,A,L,B,B,C,D.

When the first request for C arrives, one of A,B or L have to

be evicted to make room for C. According to the guidelines

of least recently used, LRU-MAD will evict A and put C into

cache. For the same reason, B is replaced by D. Then two

consecutive requests for A will cause a miss and a delayed hit

respectively. After L is requested, C is evicted from the cache

and L is stored in the cache. The following two consecutive

requests for B will also cause a miss and a delayed hit

respectively. Finally, the last request for C and D will also

be missed and the average latency of LRU-MAD is therefore

11/9. By contrast, the optimal solution will evict the larger

file L when the first request for C arrives and the subsequent

requests for A will be two hits. When L is requested, C and

D will be evicted since they have lower fetching latency. The

average latency of optimal is 5/9. If bypassing is allowed, the

optimal will bypass all the requests for L since L is with a

larger size and lower fetching latency. The average latency of

optimal with bypassing is 1/3.

In this paper, we study the online general file caching

problem with bypassing. We proposed a novel framework

to effectively transform any existing algorithm in classic

file caching models, e.g., without delayed hits considered,

to a solution for our model with delayed hits. The main

idea is to find an estimated weight for each file, which can

express the total cost caused by this file’s miss, and run the

classic algorithm with the estimated weights of all files. Our

contributions are summarized as follows.

• We investigate a practical online general file caching prob-

lem with bypassing to minimize the total latency of file

requests, where the file size and fetching latency are both

non-uniform. We first prove the lower bound Ω(ZK) and

Ω(Z logK) of this problem in deterministic and randomized

algorithms, where Z is the maximum of the file’s fetching

latency and K is the cache size (in Sec. II).

• We derive a deterministic online algorithm, called CaLa,

with the competitive ratio of O(Z3/2K). Furthermore, the

randomized version of CaLa is O(Z3/2 logK)-competitive.

To the best of knowledge, CaLa is the first online algorithm

with competitive ratios for the online general file caching

problem with delayed hits and bypassing (in Sec. III).

• We conduct extensive simulations on Google’s production

trace and Yahoo! Cloud Serving Benchmark. The results

show that compared with LRU-MAD, the state-of-the-art

algorithm that deals with delayed hits, CaLa can reduce

the latency by up to 9.42% without bypassing, which will

be increased to 32.01% if bypassing is allowed (in Sec. IV).

II. PROBLEM FORMULATION

Cache System. Motivated by applications as CDNs and MEC,

we consider the online general file caching model, a local

cache server and remote data centers. Let K be the cache

size, and F = {f1, f2, . . . , fN} be the set of all kinds of files,

where each file fi ∈ F (1 ≤ i ≤ N) has size sfi and fetching

latency zfi . We also use si to represent sfi and use zi to

represent zfi for concision when there is no ambiguity. Set

Z = maxi zi. Without loss of generality, we assume all file

sizes are integers. Naturally, the sum of sizes of files stored

in the cache can not exceed K, i.e.,
∑

f in cache sf ≤ K.

File Request Model. Let R = (r1, r2, . . . ) be the sequence

of file requests, arriving in an online manner, i.e., we can not

get the future information and no assumption is made on the

arrival patterns. Each r requests to access a specific file f ∈ F .

Time is divided into slots of unit size. Multiple different kinds

of file requests might come within one time slot, while each

file f ∈ F can be requested at most once in each slot 2.

Transmission Latency. When a request arrives at time T , if

the requested file f is already in the local cache, then this

request is called a hit and can be served immediately with no

latency. Otherwise, it has to suffer a latency to fetch this file

from the remote data center; alternatively, we might forward

2We set the time slot small enough so that the minimal interval of two
consecutive requests on the same file is at least one time slot.
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this request to get the file from the remote data center, i.e.,
bypassing the request. We set the latency to fetch a file f
taking zf time slots, i.e., this request can not be served until

time T+zf . We also set serving a request by bypassing taking

zf slots as it also needs to interact with the remote data center

similar to fetching. When fetching a file, we need to decide

which files should be evicted if the cache is already full. Before

file f is fetched and stored in the cache, all requests that

require file f at time slot t′ ∈ {T +1, T +2, . . . , T + zf − 1}
can only be served at time T + zf and suffer a latency of

zf − (t′ − T ), which are delayed hits. The objective of this

problem is to minimize the total latency of all requests.

Problem Formulation. Let Ft be set of files requested at time

t, and d(f, i) be the latency of the i-th request of f . Variable

x(f, i) indicates whether f is out of the cache after the i-th
request of f , e.g., x(f, i) = 0 means f is in the cache or in the

period of fetching after the i-th request of f , and x(f, i) = 1
means f is out of the cache after the i-th request of f . Let

r(f, t) denote the number of requests for file f until time t. Let

τ(f, i) be the time from (i−1)-th request of f to i-th request

of f . We formulate the online general file caching problem

with delayed hits and bypassing as follows:

Problem P:

min
∑

f∈F

∑

i

d(f, i)

s.t.
∑

f∈F
sf (1− x(f, r(f, t))) ≤ K, ∀t

x(f, i) ∈ {0, 1}, ∀f, i
x(f, 0) = 1, ∀f
d(f, i) = zf , if x(f, i− 1) = 1, ∀f, i
d(f, i) = max{d(f, i− 1)− τ(f, i), 0},

if x(f, i− 1) = 0, ∀f, i
Problem Hardness. When no bypassing is considered, Prob-

lem P has been proven to have a lower bound of the com-

petitive ratio of Ω(ZK) [14] for deterministic algorithms. By

using two kinds of request groups: pure and bursty requests

similar to [14], we construct the request sequence to prove our

general caching problem P has the following lower bounds for

deterministic and randomized solutions.

Lemma 1. All the deterministic online algorithms for problem
P have a lower bound of the competitive ratio of Ω(ZK)
to minimize the total latency, and all the randomized have a
lower bound of the competitive ratio of Ω(Z logK).

Proof. Please refer to Appendix A.

III. ONLINE ALGORITHM

In this section, we first propose a parameter to measure

the total latency caused by a file’s miss, called estimated
weight, to address the potential impact of the fetching process

(Sec. III-A). Then, we present our algorithm CaLa (Algo-

rithm 2) in detail in Sec. III-B. We also analyze the perfor-

mance of CaLa in Sec. III-C, and prove that the deterministic

version of CaLa is O(Z3/2K)-competitive and the random-

ized version of CaLa is O(Z3/2 logK)-competitive.

A. Estimated Weight

The central challenge of this problem is how to deal with

delayed hits. In the design of MAD [6], they use the aggregate

delay to capture the total latency caused by a file’s miss. The

aggregate delay of f at T can be calculated using Eqn. 1.

AggDelay(f, T )

=zf +
∑

1≤τ≤zf−1

(zf − τ)[f is requested at T + τ ]. (1)

The aggregate delay of file f can not be directly calculated

in practice since it requires the future information of the next

zf time slots. MAD use the average aggregate delay of all the

past requests for f to estimate the aggregate delay of the next

request for f . However, this estimation is not always accurate

hence the performance of MAD is not guaranteed. We show

the gap between the estimated value and the real aggregate

delay in Fig. 3. It shows that the estimated aggregate delay

deviates from the real value.

Fig. 3. The estimated aggregate delay [MAD, in SIGCOMM’20] vs. real
aggregate delay calculated by Eqn. 1.

To avoid the impact of misestimation, we use the upper

bound of the total latency caused by the file’s miss, i.e., z2i ,

to estimate the actual latency caused by this miss. As we will

prove later, this estimation could preserve the competitive ratio

of the internal algorithm within O(Z3/2)× extra cost.

Although using the upper bound to estimate the total latency

of a miss yields algorithms with a performance guarantee, the

actual performance of this method might be poor since it may

give too much weight to some infrequently requested files. In

general, the method of predicting the actual aggregate delay is

radical and the method using the upper bound is conservative.

To get a trade-off between these two kinds of methods, we use

the following equation to represent the weight of each file:

Wf (T ) = (1− γ)AggDelay(f, T ) + γz2f (2)

, where parameter γ is called conservative parameter and used

to adjust between these two methods.

B. CaLa

The core part of CaLa is quite simple, which imitates the

existing general file caching algorithm A while constantly
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updating the weight of each requested file. By this means,

CaLa can eliminate the impact of delayed hits while retaining

the character of the original algorithm.

Algorithm 1: EstimatedWeight

1 Input Parameter γ, file f , time T
2 if f is not in the cache then
3 f.cumulativeDelay ← f.cumulativeDelay + zf ;

4 f.fetchingTime ← T ;

5 f.numFetching ← f.numFetching + 1;

6 if f.state = OCCUPY then
7 f.cumulativeDelay ←

f.cumulativeDelay + (zf − (T − f.fetchingTime));

8 f.aggregateDelay ← f.cumulativeDelay

f.numFetching
;

9 return (1− γ) ∗ f.aggregateDelay + γ ∗ z2f ;

Algorithm 2: CaLa
1 Input Fetching Latency zi, online caching algorithm A
2 Initialize the cache C ← ∅,CA ← ∅;

3 Fetching files Ffetching ← ∅, element (f, t) ∈ Ffetching

means file f will arrive at time t;
4 Timer T ← 0;

5 while True do
6 for (f, t) ∈ Ffetching do
7 if t = T then
8 if f.state = OCCUPY then
9 f.state ← IN;

10 Serve all the buffered requests for f ;

11 while new request for file f arrive at T do
12 Wf (T ) ← EstimatedWeight(f, T );
13 Let f arrive at A with weight Wf (T );
14 if A evicts Fevict ⊆ F \ {f} from CA and puts f

into CA then
15 for f ′ ∈ Fevict do
16 Evict f ′ from C;

17 f ′.state ← OUT;

18 Put f into C;

19 f.state ← OCCUPY;

20 Ffetching ← Ffetching ∪ {(f, T + zf )};

21 if A bypasses f then
22 if (f, t) ∈ Ffetching, ∃t > T then
23 Buffer this request;

24 else
25 Bypass this request;

26 T ← T + 1;

First, we introduce the algorithm to update estimated

weights (Algorithm 1). This method is mainly adopted Algo-

rithm 1 in [6]. When a new request for f arrives, if f is not in

the cache then a new fetching period starts (Line 3 to Line 5).

If the status of f is OCCUPY, it means that f is already in

a fetching period, then we will accumulate the latency of this

request to this fetching (Line 7). Then the aggregate delay of

f is updated (Line 8) and the estimated weight of f can also

be calculated (Line 9).

The details of CaLa are described in Algorithm 2. Initially,

the cache of both CaLa and A are initialized (Line 2). When

a new request for file f arrives, calculate its weight Wf (T )
by calling Algorithm 1 and send this request to A (Line 12 to

Line 13). If A choose to evict some files Fevict in the cache to

make room for storing file f , then CaLa evicts all the files in

Fevict (Line 14 to Line 17) and reserve space for f (Line 18 to

Line 20). If A choose to bypass this request, then CaLa also

bypasses it (Line 25). When a file finishes its fetching, serve

all the buffered requests (Line 6 to Line 10).

We use a modified version of Landlord, i.e., Landlord with

bypassing (LLB) [15], as the kernel of CaLa. Landlord [8] is

an O(K)-competitive online algorithm for general file caching

problem. It maintains a credit for each file to determine

whether it should be evicted. Similar to Landlord, LLB also

maintains a non-negative credit for each file. When a request

for file f arrives, LLB will first set the credit of f as wf ,

where wf is the fetch cost of f . In the design of CaLa, we

set wf = Wf (T ) (Line 13 in Algorithm 2). Let G be a set of

files consisting of all files in the cache and f . Then for all the

files g ∈ G, decrease their credit by Δ times their size and

delete zero-credit files in G, where Δ is the minimum value

to zero the credit of a file, until the sum of files in G is no

larger than K. If f remains in G in the end then fetch f to

the cache, otherwise, bypass the request for f .

C. Analysis

To facilitate the proof, we define the following notations.

Let ALG(zi) and OPT(zi) be respectively the total latency

incurred by CaLa and offline optimal solution in the model

of general file caching with delayed hits and bypassing if the

latency to fetch fi or bypass request for fi is zi. Let A(zi) and

OPT′(zi) be respectively the total cost of online algorithm

A and offline optimal solution of general file caching with

bypassing, where A is c-competitive and zi is the cost to fetch

or bypass fi. Similarly, A(z2i ) and OPT′(z2i ) are the total cost

when the cost to fetch or bypass fi is z2i . Clearly, we have

A(z2i ) ≤ c ·OPT′(z2i ).

Lemma 2. ALG(zi) ≤ A(z2i ).

Proof. We define fetching group of fi as all requests to fi from

a fetching of fi to the next fetching or bypassing of fi. Clearly,

each fetching group of fi only contain a single fetching of

fi followed by zero or more delayed hits of fi. Since each

fetching of fi at most causes zi − 1 delayed hits, the fetching

latency of each fetching group of fi of ALG(zi) is at most

zi(zi + 1)/2. On the other hand, the fetching latency of each

fetching group of fi of A(z2i ) is exactly z2i . For each bypassing

of fi in A, the corresponding latency of fi in CaLa is no larger

than zi and the cost in A is z2i . By definition, each request in A
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is ether in a fetching group or a bypassing. Since CaLa follows

the operations of A, the fetching group of ALG(zi) is exactly

the same as A(z2i ). Thus, ALG(zi) ≤ A(z2i ).

Fact 1. For general file caching with bypassing, let I1 and

I2 be two input sequences that request the same files, where

the cost to fetch files in I1 are (w1, w2, . . . , wn) and the cost

to fetch files in I2 are (αw1, αw2, . . . , αwn). Then we have

OPT′(I1) = αOPT′(I2).
Fact 2. For general file caching with bypassing, let I1 and

I2 be two input sequences that request the same files, where

the cost for files in I1 are (w1, w2, . . . , wn) and the cost for

files in I2 are (w′
1, w

′
2, . . . , w

′
n) and assume w1 ≤ w′

1, w2 ≤
w′

2, . . . , wn ≤ w′
n. Then we have OPT′(I1) ≤ OPT′(I2).

By using Fact 1 and Fact 2, we have the following lemma.

Lemma 3. OPT′(z2i ) ≤ Z ·OPT′(zi).

Then, we get the connection between the optimal of file

caching and optimal of problem P by the following lemma.

Lemma 4. OPT′(zi) ≤ Z1/2OPT(zi).

Proof. Similar to the proof of Lemma 2, define fetching group

of fi as all requests to fi from a fetching of fi to the next

fetching of fi. For each fetching group of fi, it contains a

fetching operation and zero or more delayed hits. Let m be the

number of delayed hits in this fetching group (0 ≤ m ≤ zi−1)

and d1, d2, . . . , dm be the latency caused by these delayed

hits respectively. Thus, the average latency caused by miss

of delayed hits is at least (zi +
∑m

i=1 di)/(m + 1) ≥ (zi +∑m
i=1 i)/(m + 1) ≥ √

zi in OPT(zi). Since the solution of

OPT(zi) is a feasible solution in the model without delayed

hits and the bypassing latency in these two models are both

zi, we have OPT′(zi) ≤ Z1/2OPT(zi).

By combining Lemma 2, Lemma 3 and Lemma 4 together,

we have the following theorem.

Theorem 1. If there is an online file caching algorithm A with
bypassing is c-competitive, CaLa is O(Z3/2c)-competitive for
the online file caching problem with heterogeneous fetching
latency and bypassing by setting γ = 1.

It should be noted that by using a similar method to prove,

we can get the same result in the case without bypassing. Since

there are deterministic O(K)-competitive online algorithm

and randomized O(logK)-competitive online algorithm for

general file caching [15], we have the following corollary.

Corollary 1. By setting γ = 1, the deterministic version of
CaLa is O(Z3/2K)-competitive, and the randomized version
of CaLa is O(Z3/2 logK)-competitive.

IV. EVALUATION

We evaluate the performance of CaLa on two datasets: (1)

the production trace from Google [13], and (2) the system

benchmark of YCSB workloads from Yahoo [16], which is

used widely in previous works (e.g., [3], [17], [18]). We

compare CaLa with several state-of-the-art methods, i.e.,
LRU [1], LRU-MAD [6], Landlord [8], and Landlord with

bypassing [15]. The details of experiment results are shown

in Sec. IV-C and we highlight our key findings as follows.

• Compare with LRU-MAD, the state-of-the-art algorithm

deals with delayed hits. Among all settings, CaLa can

reduce latency by up to 9.42% without bypassing, this re-

duction will be increased to 32.01% if bypassing is allowed.

• CaLa can achieve a similar hit ratio to LRU-MAD, and

evicts more large files to make space for more frequent

and high latency files. Furthermore, CaLa with bypass-

ing achieves a higher hit ratio by bypassing infrequent

requests to the remote data center.

• If the cache size is small (e.g., sum of 0.1% to 0.5% of

the active files), CaLa with bypassing outperforms other

algorithms significantly by bypassing.

A. Methodology

We set the cache size in a way similar to [6], where the

cache size is the sum of the sizes of the most active files. The

default cache size is the sum of the sizes of top 1% active

files. For CaLa, the default value of γ is set to 0.1.

Workloads. There are 4.4M and 2.8M requests in Google’s

production trace and YCSB benchmark, respectively. It should

be noted that the request sequence patterns of these two

traces are totally different. The requests in Google’s trace

for the same file are usually arriving continuously, while the

requests in YCSB benchmark are arriving individually. To

express this more clearly, we define the request locality of a

sequence as the ratio of the number of requests that followed

by requests require the same file and the number of total

requests. The request locality of Google’s trace and YCSB

benchmark are 0.7058 and 0.0025, respectively. For Google’s

production trace, we use “RAM Used” as the size of the file.

The size of the file of YCSB benchmark is generated with

exponential distribution, and its mean value is set to be close

to Google’s trace. By default, we set the average inter-request

time to 100μs, i.e., 10K requests arrive in a second. For

reference, the peak number of requests per minute during a

flash crowd is about 35K [19]. The average default latency of

files is set to 100ms (i.e., the average value of zf for each file

f is 1000), which is the approximate latency to fetch files from

remote data center [5]. Since both traces lack the information

of the file’s fetching latency, we randomly generate a latency

uniformly distributed within (0, Zupper) for each file, where

Zupper is 2× the average fetching latency.

Metrics. The metrics used to evaluate the performance of

algorithms is the total latency incurred of all requests, includ-

ing the latency caused by misses, delayed hits or bypassing.

Furthermore, we use the latency improvement relative to

LRU to measure the performance of the algorithm when the

parameters change, which can be calculated by

Latency Improvement of A =
Latency(LRU) − Latency(A)

Latency(LRU)
.

A higher latency improvement means a better performance.
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B. Baseline Algorithms

We compare the performance of our proposed algorithms

CaLa (γ = 1) without bypassing, CaLa without bypassing

and CaLa with bypassing with the following baselines for

minimizing the total latency.

LRU [1]. Least Recently Used is the most classic algorithm in

the caching problem, which will evict the file that has not been

used for the longest time. LRU is O(K)-competitive for the

paging problem. Due to the locality of requests, LRU generally

performs well in a production environment.

LRU-MAD [6]. LRU-MAD is the state-of-the-art caching

algorithm that deals with delayed hits by calculating each files’

rank. The rank of a file is the aggregate delay of this file

divided by the time since its last request and LRU-MAD will

evict the file with the lowest rank when the cache is out of

space. Although in the system model of [6] all the file has the

same fetching latency, LRU-MAD is aware of heterogeneous

fetching latency because of the calculation of aggregate delay.

Landlord [8]. Landlord is an algorithm for online general file

caching, which has a competitive ratio of O(K). The core of

Landlord is to maintain a credit for each file and evict all the

zero-credit files. For each file, its credit is set to its cost (i.e.,
fetching latency in this paper) when it is requested. Credit for

all files in the cache will be decreased by a value proportional

to the size of the file.

Landlord with Bypassing [15]. To support bypassing, Land-

lord with bypassing sets the credit of the new requested file to

its cost first. Then decrease all the credit of files in the cache

and the new requested file. Similar to Landlord, all the zero-

credit files will be evicted. If the credit of the new requested

file is decreased to zero, then bypass it.

C. Experiment Results

Overall Result. We first evaluate the overall performance of

CaLa (γ = 1) without bypassing, CaLa without bypassing

and CaLa with bypassing, and compare them with LRU,

LRU-MAD, Landlord and Landlord with bypassing, where

parameters are set as default values. The experimental results

are shown in Fig. 4, where the total latency of each algo-

rithm is normalized so that the total latency of LRU is 1.

Fig. 4(a) illustrates the results without bypassing. The latency

improvements of CaLa to LRU, LRU-MAD and Landlord in

Google’s trace are 31.76%, 7.10% and 19.99%, respectively.

For the results in YCSB benchmark, the latency improvements

of CaLa are 10.58%, 6.81% and 1.42%, respectively. We show

the result of latency improvement of bypassing in Fig. 4(b). It

shows that if bypassing is allowed, compared with the situation

without bypassing, CaLa reduces 15.79% and 3.87% latency

on Google’s trace and YCSB benchmark, respectively. The

performance gain of bypassing can also be seen from the im-

provement of Landlord with bypassing compared to Landlord.

We also found the performance of LRU-MAD is better than

Landlord in Google’s trace, while the opposite result is shown

in YCSB benchmark. This phenomenon indicates aggregate

delay captured burst requests and failed to handle the sequence

without locality, and CaLa performs well in both cases.

(a) Total latency w/o bypassing. (b) Total latency w/ bypassing.

Fig. 4. Overall performance.

Hit Delayed Hit Miss Bypassing

(a) Google (b) YCSB

Fig. 5. Ratio of hit, delayed hit, miss and bypassing.

Ingredient of Latency. To explore the factors that affect

the algorithm performance, we show the ratio of hit, delayed

hit, miss and bypassing of each algorithm in Fig. 5. Firstly,

we can find that the hit ratio generally determines the final

performance of an algorithm. In the result of Google’s trace,

the hit ratio of LRU-MAD is the highest among all the

algorithms without bypassing. CaLa also gets a hit ratio close

to LRU-MAD, but achieves a better performance. This is

because CaLa tends to evict more large files and reserve more

space for high latency files. When bypassing is allowed, the

hit rate will be further improved and better performance will

be obtained. This phenomenon is more obvious in the results

of YCSB benchmark. There are always requests for infrequent

files that cause inevitable misses. Thus the hit ratios are very

low for all the algorithms without bypassing. By bypassing

some of these requests, part of frequent files will not be evicted

and hence the hit ratio of Landlord with bypassing and CaLa
with bypassing are significantly increased.

Size of Evicted Files. We investigate the sizes of evicted files

of different algorithms in Fig. 6. The distributions of LRU and

LRU-MAD are roughly close, whlie Landlord and CaLa are

around close. Due to the limitation of space, we only plot the

difference between LRU-MAD and CaLa. For each size value,

we count the number of files with this size are evicted. The
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(a) Google (b) YCSB

Fig. 6. Distribution of size of evict files, where the size is normalized so that
the size of the smallest file is 1.

value on the y-axis represents the number of files evicted by

CaLa compared with LRU-MAD. It shows that CaLa evicts

more large files, making more space left for files with high

frequency and high latency.

(a) Google (b) YCSB

Fig. 7. Distribution of the latency of requests

Latency of Requests. We plot the distribution of latency of

requests in Fig. 7, including latency caused by bypassing,

misses and delayed hits, where the height of a point for a

specific latency represents the number of requests served at

this latency. In the Google’s trace, LRU has more high latency

requests, resulting in its overall poor performance. With the

help of aggregate delay, LRU-MAD is much better to reduce

the number of high latency requests. However, in the YCSB

benchmark, the distribution of LRU-MAD is close to LRU,

which means aggregate delays are not that effective when the

requests are not bursty. Besides, we can observe that CaLa can

better avoid missing high latency files in both traces.

D. Sensitivity Study

Impact of Cache Size. To investigate the impact of cache

size, we change the cache size from 0.1% to 10% and show the

results in Fig. 8, where the metrics to measure the performance

of algorithms are latency improvement relative to LRU. First,

when the cache size is small (e.g., sum of 0.1% to 0.5% of

the active files), CaLa with bypassing performs far beyond

other algorithms. This is because bypassing can avoid evicting

some frequently requested files in the cache and reduce the

number of misses and delayed hits, and this situation happens

more frequently when the cache size is small. As the cache

size gradually increases, the performance of CaLa gradually
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Fig. 8. Impact of cache size.

catches up with CaLa with bypassing. It should be noted

that due to the discreteness of files’ size in the trace, for

different algorithms the performance improvement brought

by the additional cache size does not occur simultaneously

as the cache size increases, which causes the fluctuations

in performance curves. Finally, when the cache size is large

enough, almost all the frequent files can be stored in the cache

and the performance of all algorithms tends to be the same.
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Fig. 9. Impact of fetching latency.

Impact of Fetching Latency. We show the result of the impact

of fetching latency in Fig. 9, where the fetching latency change

from 10 to 100000 time slots. The performance of LRU-

MAD, CaLa and CaLa with bypassing start increasing when

the fetching latency becomes higher since their awareness of

latency and delayed hits. In the result of YCSB benchmark,

the performance of algorithms is more likely the case without

delayed hits. The reason is that there are few requests with

delayed hits, especially when the latency is relatively small.

When the average fetching latency becomes very large, in

both traces these algorithms tend to have similar performance,

since almost all the requests are misses or delayed hits.

The fluctuation of the curves in Fig. 9 reflects the different

sensitivity of various algorithms to the fetching latency.

Impact of γ. As shown in Fig. 10, for the Google’s trace,

the best performance is achieved when γ = 0.05 or γ = 0.1,

which shows that it is better to use a value of γ closer to the

aggregate delay for burst requests. In the YCSB benchmark

test, the best performance can be obtained by setting γ = 0.

However, CaLa with bypassing performs extremely bad when
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(a) Google (b) YCSB

Fig. 10. Impact of γ.

γ = 0 in Google’s trace, which indicates that the estimation

error of aggregate delay will seriously affect the results of

bypassing, especially in the case of burst requests.

V. RELATED WORKS

Theoretical Results of Caching. The first systematic study

of the performance analysis of caching algorithm is presented

by Sleator and Tarjan [1], which shows that LRU and FIFO

are k
k−h+1 -competitive and no deterministic online algorithm

can achieve a better competitive ratio. Here, k and h are the

cache size of the online algorithm and offline optimal, respec-

tively. Fiat et al. proposed the first online paging algorithm

Marking [7] with 2Hk-competitive and showed no randomized

online algorithm could be better than Hk-competitive. For the

caching problem with nonuniform file size, Irani [20] proposed

a general method to transfer this problem to the uniform setting

and gave an online algorithm with O(log2 k) when the fetch

cost of a file equals 1 or its size. Jiang [21] et al.studied the

weighted paging problem and gave a lower bound of O(log k)
in the PRP model. Then they proposed a stronger model called

SPRP and gave an algorithm with 2-competitive. For the most

general setting of nonuniform file size and fetch cost, Bar-

Noy et al. [22] gave a 4-approximate algorithm for the offline

version and Adamaszek et al. [23] showed a tight online

algorithm with O(log k)-competitive. Tan et al. studied the

caching variant in edge computing, where the system contains

multiple caches and the requests can be relayed to other cache,

and gave an O(log k)-competitive online algorithm for this

problem. Lykouris and Vassilvitskii [24] first studied the online

paging problem with machine learning advice and gave an

algorithm with O(1 +min(
√
η/OPT , log k)), where η is the

total absolute loss and OPT is the cost of offline optimal.

Based on this work, Rohatgi [25] improved the theoretical

result to O(1 + min((η/OPT )/k, 1) log k) and provided a

lower bound of Ω(logmin((η/OPT )/(k log k), k)).
Caching Algorithms in CDNs. Some works explore more

valuable features to optimize cache performance based on

the actual production environment than given performance

guarantees. Hu et al. [26] uses data locality to minimize

the average response time of key-value caches. Beckmann

et al. [12] proposed the algorithm LHD to predict the hit

density of each object to filter objects that have a small

contribution to the cache hit rate. Berger et al. [27] proposed

AdaptSize, an adaptive, size-aware cache admission policy for

hot object cache in CDN. Berg et al. [28] showed CacheLib, a

general-purpose caching engine, extracts a core set of common

requirements and functionality from otherwise disjoint caching

systems. Ye et al. [29] proposed a learning framework to learn

the joint cache size scaling and strategy adaptation policy

for Elastic CDN. Zong et al. [30] proposed Cocktail Edge

Caching, which employed an ensemble of constituent caching

policies and adaptively selected the best-performing approach

to control the cache. Song et al. [31] proposed LRB to

mimic the relaxed Belady’s MIN algorithm by using Gradient

Boosting Machines [32]. Akhtar et al. [33] described AviC, a

caching algorithm that leverages properties of video delivery to

design the eviction policy in CDN. Zhou et al. [34] introduced

Bounded Linear Probing (BLP), a cache design by balancing

hit rate and lookup latency for network appliances. Jin et
al. [35] presented NetCache, a key-value store architecture

that balances the load across storage nodes. Garetto et al. [36]

provided a first comprehensive analysis of similarity caching

in different settings. Atre et al. [6] first studied the caching

problem with delayed hits and proposed a heuristic to estimate

the latency caused by a miss. Paper [14] introduced the lower

bound of caching with delayed hits for deterministic solutions.

In this work, we first extend the lower bound to randomized

algorithms, then propose a general framework to transform

an existing competitive algorithm for the general file caching

problem to address delayed hits with a performance guarantee.

We summarize the related theoretical results in Table I.

TABLE I
THEORETICAL RESULTS OF CACHING PROBLEMS

Algorithms
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LRU [1] Uniform � � O(K) D

Marking [7] Uniform � � O(logK) R

Landlord [8] Non-uniform � � O(K) D

Adamaszek

et al. [23]
Non-uniform � � O(logK) R

Camul-det,

Camul [3]
Uniform � �

O(K)

O(logK)

D

R

LLB [15] Non-uniform � � O(K) D

MAD [6] Uniform � � - D

CaLa [this work] Non-uniform � �
O(Z3/2K)

O(Z3/2 logK)

D

R

� D: Deterministic Algorithm, R: Randomized Algorithm.

VI. DISCUSSION

More Accurate Estimated Weight. For the estimated weight,

we only use a rough method, by setting a parameter γ, to

linearly combine the aggregate delay and its upper bound. For

various input sequences, the optimal value of γ might be com-

pletely different. There could be quite some promising direc-
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tions to estimate more accurately the total latency of a request

miss and find a better adaptive way to set the estimated weight.

For example, the way to estimate aggregate delay should be

highly correlated with time. Moreover, the combination could

be more complex, e.g., with more estimators but not just a

simple linear combining. For more complicated applications,

deep reinforcement learning based methods might work well.

We leave this estimation improvement as our future work.

Portraying the Fetching Latency. In this work, we prove

that CaLa can transform an existing file caching algorithm

to handle delayed hits with extra O(Z3/2)× cost. This trans-

formation is not tight since the lower bounds of file caching

with delayed hits are Ω(ZK) and Ω(Z logK) for determin-

istic algorithm and randomized algorithm. The gap between

CaLa and the lower bound may not reflect the performance in

practice, since the parameter chooses to portray the fetching

latency, i.e., Z, is just a rough estimate of the overall data.

For example, when the latency of all files increases to Z, the

theoretical performance bound of CaLa remains the same,

while the actual total latency of CaLa may substantially

increase. There might be other parameters that potentially

better describe the request sequence.

VII. CONCLUSION

In this paper, we study the general online file caching

problem with delayed hits and bypassing, where the objective

is to minimize the total latency of all the requests. We first

prove lower bound Ω(ZK) and Ω(Z logK) for deterministic

algorithms and randomized algorithms, respectively. Then we

propose a general framework, i.e., CaLa, which estimates

the latency of each request and then imitates an existing

file caching algorithm to get guaranteed performance. We

prove that the deterministic version and randomized ver-

sion of CaLa have a competitive ratio of O(Z3/2K) and

O(Z3/2 logK), respectively. We evaluate CaLa based on

Google’s trace and YCSB benchmark. The experiment results

show that compare with LRU-MAD, CaLa can reduce the

latency by up to 9.42% without bypassing. Furthermore, this

reduction will be increased to 32.01% if bypassing is allowed.
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APPENDIX A

PROOF OF LEMMA 1

Proof. We define two kinds of request groups, pure and bursty
requests, similar to [14]. A pure request for fi consists of Z+1

time slots, where the first slot requests fi, and the following Z
slots do not request any file. A bursty request for fi consists of

2Z slots, where the first Z slots request file fi, and the next Z
slots do not request any file. If a pure or bursty request is hit,

there will be no latency accrued. If a pure request is missed,

the latency caused is Z; and, if a bursty request is missed,

the latency caused is at least
Z(Z+1)

2 . Let rpi and rbi be pure

and bursty request for fi, respectively. Assume totally K + 1
different files will be requested.

Deterministic Algorithm. Let A be a deterministic online

algorithm for problem P. Without loss of generality we assume

that files f1, . . . , fK are stored in the cache initially. First, the

constructor requests rpK+1. Since the cache size is K, there is

at least one file out of the cache whether bypassing is allowed

or not. Then repeat bursty requests for K times. The j-th

bursty request is rbij , where fij is the file not in the cache

of A just before j-th bursty request. Thus, for each bursty

request, the latency caused by A is at least
Z(Z+1)

2 , and the

total latency of A is Z +K Z(Z+1)
2 . By contrast, the latency

of optimal is only Z caused by rpK+1.

Randomized Algorithm. Let A be a randomized online

algorithm for problem P. When we construct the request

sequence σA we can maintain a vector p = (p1, p2, . . . , pK+1)
of probabilities, where pi is the probability that file fi is

not in cache. Since there is only one file not in the cache,

we have
∑

i pi = 1. Note that this vector of probabilities

is valid whether bypassing is allowed or not. Similar to the

marking algorithm, the constructor also maintains whether

each file is marked, and divides the request sequence into

several consecutive phases based on these markers. A file is

marked when it was required in the current phase. When the

number of marked files reaches K+1, a new phase starts and

all files except the file just requested are set to unmarked. In

general, each phase contains requests for exactly K different

files and starts with a request requiring a file not required

in last phase. Each phase then is divided into K subphases,

where each subphase consists of several requests for marked

files and ends with an unmarked file.

The sequence constructor can generate a sequence such that

the expected latency of each phase to A is at least
Z(Z+1)

2 HK ,

and the latency to the optimal is Z. Without loss of generality,

we assume that files f1, . . . , fK are stored in the cache at the

beginning of this phase. The first request in this phase is rpK+1.

Let u be the number of unmarked files. Let M be the set of

marked files. Let P =
∑

fi∈M pi. If P = 0 then there must be

an unmarked file fi with pi ≥ 1/u and this subphase contains

a single request to rbi . The expected latency of this request is at

least
Z(Z+1)

2
1
u . If P > 0 then continuously require rbi until the

total expected latency of this subphase exceeding
Z(Z+1)

2
1
u if

this subphase ends with a request of an unmarked file, where

fi ∈ M and pi > 0. Finally, u takes all the integer between

1 and K thus the total latency of A is
Z(Z+1)

2 HK , whereas

the total latency of optimal is Z caused by rpK+1.
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